3.155 \(\int \frac{\sec (c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=87 \[ \frac{(A+3 B) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}+\frac{(A-B) \tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \]

[Out]

((A + 3*B)*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) + ((A - B)
*Tan[c + d*x])/(2*d*(a + a*Sec[c + d*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.121754, antiderivative size = 87, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.097, Rules used = {4000, 3795, 203} \[ \frac{(A+3 B) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}+\frac{(A-B) \tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

((A + 3*B)*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) + ((A - B)
*Tan[c + d*x])/(2*d*(a + a*Sec[c + d*x])^(3/2))

Rule 4000

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[((A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(a*f*(2*m + 1)), x] + Dist[(a*B*m + A*b*
(m + 1))/(a*b*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, A, B, e, f}, x
] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] && LtQ[m, -2^(-1)]

Rule 3795

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sec (c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx &=\frac{(A-B) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac{(A+3 B) \int \frac{\sec (c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx}{4 a}\\ &=\frac{(A-B) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac{(A+3 B) \operatorname{Subst}\left (\int \frac{1}{2 a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{2 a d}\\ &=\frac{(A+3 B) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a+a \sec (c+d x)}}\right )}{2 \sqrt{2} a^{3/2} d}+\frac{(A-B) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.79939, size = 127, normalized size = 1.46 \[ \frac{2 (A-B) \sin (c+d x) \sqrt{1-\sec (c+d x)}+2 \sqrt{2} (A+3 B) \cos ^2\left (\frac{1}{2} (c+d x)\right ) \tan (c+d x) \tanh ^{-1}\left (\frac{\sqrt{1-\sec (c+d x)}}{\sqrt{2}}\right )}{4 a d (\cos (c+d x)+1) \sqrt{1-\sec (c+d x)} \sqrt{a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sec[c + d*x]*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(2*(A - B)*Sqrt[1 - Sec[c + d*x]]*Sin[c + d*x] + 2*Sqrt[2]*(A + 3*B)*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]]*C
os[(c + d*x)/2]^2*Tan[c + d*x])/(4*a*d*(1 + Cos[c + d*x])*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

Maple [B]  time = 0.19, size = 402, normalized size = 4.6 \begin{align*}{\frac{1}{4\,d{a}^{2} \left ( \cos \left ( dx+c \right ) +1 \right ) \sin \left ( dx+c \right ) }\sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}} \left ( A\sin \left ( dx+c \right ) \cos \left ( dx+c \right ) \ln \left ( -{\frac{1}{\sin \left ( dx+c \right ) } \left ( -\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) +\cos \left ( dx+c \right ) -1 \right ) } \right ) \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}+3\,B\sin \left ( dx+c \right ) \cos \left ( dx+c \right ) \ln \left ( -{\frac{1}{\sin \left ( dx+c \right ) } \left ( -\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) +\cos \left ( dx+c \right ) -1 \right ) } \right ) \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}+A\ln \left ( -{\frac{1}{\sin \left ( dx+c \right ) } \left ( -\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) +\cos \left ( dx+c \right ) -1 \right ) } \right ) \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) +3\,B\ln \left ( -{\frac{1}{\sin \left ( dx+c \right ) } \left ( -\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) +\cos \left ( dx+c \right ) -1 \right ) } \right ) \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) -2\,A \left ( \cos \left ( dx+c \right ) \right ) ^{2}+2\,B \left ( \cos \left ( dx+c \right ) \right ) ^{2}+2\,A\cos \left ( dx+c \right ) -2\,B\cos \left ( dx+c \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x)

[Out]

1/4/d/a^2*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)*(A*sin(d*x+c)*cos(d*x+c)*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1
/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+3*B*sin(d*x+c)*cos(d*x+c)*ln(-(-
(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)
+A*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+
1))^(1/2)*sin(d*x+c)+3*B*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*c
os(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-2*A*cos(d*x+c)^2+2*B*cos(d*x+c)^2+2*A*cos(d*x+c)-2*B*cos(d*x+c))/(c
os(d*x+c)+1)/sin(d*x+c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*sec(d*x + c)/(a*sec(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [B]  time = 0.57218, size = 957, normalized size = 11. \begin{align*} \left [\frac{4 \,{\left (A - B\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - \sqrt{2}{\left ({\left (A + 3 \, B\right )} \cos \left (d x + c\right )^{2} + 2 \,{\left (A + 3 \, B\right )} \cos \left (d x + c\right ) + A + 3 \, B\right )} \sqrt{-a} \log \left (\frac{2 \, \sqrt{2} \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, a \cos \left (d x + c\right )^{2} + 2 \, a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{8 \,{\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}, \frac{2 \,{\left (A - B\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - \sqrt{2}{\left ({\left (A + 3 \, B\right )} \cos \left (d x + c\right )^{2} + 2 \,{\left (A + 3 \, B\right )} \cos \left (d x + c\right ) + A + 3 \, B\right )} \sqrt{a} \arctan \left (\frac{\sqrt{2} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt{a} \sin \left (d x + c\right )}\right )}{4 \,{\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[1/8*(4*(A - B)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) - sqrt(2)*((A + 3*B)*cos(d*x
 + c)^2 + 2*(A + 3*B)*cos(d*x + c) + A + 3*B)*sqrt(-a)*log((2*sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d
*x + c))*cos(d*x + c)*sin(d*x + c) + 3*a*cos(d*x + c)^2 + 2*a*cos(d*x + c) - a)/(cos(d*x + c)^2 + 2*cos(d*x +
c) + 1)))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d), 1/4*(2*(A - B)*sqrt((a*cos(d*x + c) + a)/cos(
d*x + c))*cos(d*x + c)*sin(d*x + c) - sqrt(2)*((A + 3*B)*cos(d*x + c)^2 + 2*(A + 3*B)*cos(d*x + c) + A + 3*B)*
sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))))/(a^2*d*co
s(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (A + B \sec{\left (c + d x \right )}\right ) \sec{\left (c + d x \right )}}{\left (a \left (\sec{\left (c + d x \right )} + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral((A + B*sec(c + d*x))*sec(c + d*x)/(a*(sec(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [B]  time = 9.22598, size = 208, normalized size = 2.39 \begin{align*} \frac{\frac{{\left (\sqrt{2} A + 3 \, \sqrt{2} B\right )} \log \left ({\left | -\sqrt{-a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt{-a} a \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )} - \frac{{\left (\sqrt{2} A a \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right ) - \sqrt{2} B a \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )\right )} \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a^{3}}}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

1/4*((sqrt(2)*A + 3*sqrt(2)*B)*log(abs(-sqrt(-a)*tan(1/2*d*x + 1/2*c) + sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)))/
(sqrt(-a)*a*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)) - (sqrt(2)*A*a*sgn(tan(1/2*d*x + 1/2*c)^2 - 1) - sqrt(2)*B*a*sgn(
tan(1/2*d*x + 1/2*c)^2 - 1))*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*tan(1/2*d*x + 1/2*c)/a^3)/d